

(ENGINEERS)

SUBMITTAL DATA

Industrial Airfoil Blade Control Damper

Model NAH-720-3

Design / Application

Model **NAH-720-3** (Opposed Blade Operation) and **NAH-721-3** (Parallel Blade Operation) are Industrial Air Control Damper with Airfoil Shaped Blades. These models consist of a heavy duty flanged frames designed for direct attachment to the ductwork or equipment. **NAH Series** models are ideal for balancing and/or shut off HVAC applications in the industrial systems with many options to meet your needs.

STANDARD CONSTRUCTION:

FRAME:

8" x 2" x 1/4" H.R.S. steel channel [203.2 x 50.8 x 6.35mm]

BLADES:

Airfoil-shaped 14 ga H.R.S. double skin construction 5" [127mm] to 8" [203.2mm] wide.

AXLES:

Steel 3/4" [19.05mm] Ø

LINKAGE:

9 ga galvanized jamb linkage

BEARINGS:

Bronze Oilite

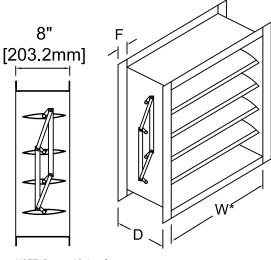
AVAILABLE FINISHES:

- ☐ Zinc Rich Gray Primer
- ☐ Special 1000°F Paint (Black Only)

SIZE LIMITATIONS:

Maximum size: 60"w x 96"h [1524 x 2438.4mm] Minimum size: single blade 6"w x 8"h [152.4 x 203.2mm]

RATINGS:


Pressure: 10-35" w.g.- differential pressure

Velocity: 3000-6000 fpm Temperature: 180° -400°

Note: Special blade clearances are required when temperatures exceed 250°F (121°C). Consult United Enertech In

these cases.

NOTE: Damper blades always run horizontal and are always the first dimension (W) when ordering (example: always order W" x H").

*Inside Dimensions are Actual Size(not undersized)

OPTIONS

- ☐ Stainless steel jamb seals
- ☐ Flange bolt holes
- ☐ EPDM blade seals 250° F
- ☐ Silicone blade seals 450° F
- ☐ 304 stainless steel construction
- ☐ 316 stainless steel construction
- ☐ Ball bearings: (2) hole flange style
 - ☐ Standard
- ☐ Stainless steel☐ Stuffing box seal☐
- ☐ Outboard bearing with shaft seal
- ☐ Linkage cover
- ☐ Central manifold grease system
- ☐ Hand Quadrant
- ☐ Actuator
- ☐ Powder Coated
- ☐ 1000° F (powder coated) resistance
- ☐ Insulated (Foam Filled Blades)

	Max.Temp.	"W"	"H"		Flange Width	Bolt Hole Information				nation			
Quantity:	Max.Temp. (if higher than 250°F)	Width	Helght	"D" 8" std.	"F" 2" std.	J	N1	L Spacing	M Dia.	K	N2	C	REMARKS

Job Nan	ne:						□ M (ode	INA	H-720-3 (opposed	blades)
Location	1:						⊐ Мо	ode	INA	H-721-3 (parallel b	olades)
Architec	t:					<u> </u>		() L D)		DATE	DEV DATE
Fanina.						┪┖	DRAW	NN B	Υ:	DATE:	REV. DATE:
Enginee							CI	_J		3-12-03	8-31-15
Contract	tor:						REV	.NO.	•	APPROVED BY:	DWG NO.:
								5	•	BGT	C-21

Imperial Units (Forward Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class I	Class II	Class II	15 lbs/in
24" X 24"	Class I	Class I	Class I	12.59 lbs/in
36" X 36"	Class I	Class I	Class I	15 lbs/in
12" X 48"	Class III	Class III	Class II	12.59 lbs/in
48" X 12"	Class I	Class I	Class I	12.59 lbs/in
60" X 36"	Class II	Class II	Class II	15 lbs/in

Air leakage is based on operation between 50°F to 104°F. All data corrected to represent air density of 0.075 lbs/ft.3

Imperial Units (Back Flow)

Damper Width X Height	1 in. w.g. Class	4 in. w.g. Class	8 in. wg Class	*Torque (per sq. ft.)
12" x 12"	Class II	Class III	Class III	15 lbs/in
24" X 24"	Class I	Class I	Class II	12.59 lbs/in
36" X 36"	Class II	Class III	Class III	15 lbs/in
12" X 48"	Class III	Class III	Class III	12.59 lbs/in
48" X 12"	Class II	Class II	Class II	12.59 lbs/in
60" X 36"	Class III	Class III	Class II	15 lbs/in

^{*}Torque applied to hold damper in closed position

	Leakage, ft ³/min²/ft						
	Required	Rating	Extended Rar	nges (optional)			
Pressure	1"	4"	8"	12"			
I	4	8	11	14			
II	10	20	28	35			
III	40	80	112	140			

All data corrected to represent standard air at a density of 0.075 lbs/ft.

NAH-720 SOUND RATINGS								
Damper	Dam		Damper		Damper		Damper	
Size	Full C		75% Open		50% Open		25% Open	
	CFM	NC	CFM	NC	CFM	NC	CFM	NC
12 x 12	2000 3000 4000	16 28 36	1500 2250 3000	11 21 29	1000 1500 2000	11 18 24	500 750 1000	* *
18 x 18	2250	17	1688	10	1125	21	563	*
	4500	33	3375	26	2250	31	1125	*
	6750	43	5063	37	3375	40	1688	15
24 x 24	4000	11	3000	10	2000	26	1000	*
	8000	33	6000	29	4000	37	2000	21
	12000	43	9000	42	6000	46	3000	31

AMCA Test Figures

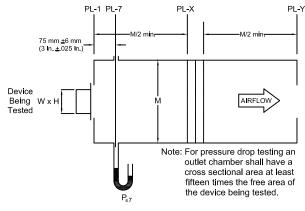


Figure 5.4- Test Device Setup with Outlet Chamber

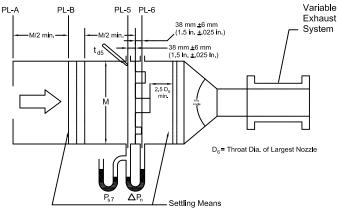


Figure 6.3- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Inlet

^{*}Torque applied to hold damper in closed position

Standard International Units (Forward Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class I	Class II	Class II	2,679 grams/cm
610 X 610	Class I	Class I	Class I	2,248 grams/cm
915 X 915	Class I	Class I	Class I	2,679 grams/cm
305 X 1220	Class III	Class III	Class II	2,248 grams/cm
1220 X 305	Class I	Class I	Class I	2,248 grams/cm
1525 X 915	Class II	Class II	Class II	2,679 grams/cm

Air leakage is based on operation between 10°C to 40°C. All data corrected to represent air density of 1.201 kg/m3

Standard International Units (Back Flow)

Damper Width X Height (mm)	250 Pa Class	1 KPa Class	2 KPa Class	*Torque
305 x 305	Class II	Class III	Class III	2,679 grams/cm
610 X 610	Class I	Class I	Class II	2,248 grams/cm
915 X 915	Class II	Class III	Class III	2,679 grams/cm
305 X 1220	Class III	Class III	Class III	2,248 grams/cm
1220 X 305	Class II	Class II	Class II	2,248 grams/cm
1525 X 915	Class III	Class III	Class II	2,679 grams/cm

^{*}Torque applied to hold damper in closed position

		Leakage, L/s /m²						
	Require	d Rating	Extended Ranges (optional)					
Pressure	0.25 kPa	1.0 kPa	2.0 kPa	3.0 kPa				
I	20.3	40.6	55.9	71.1				
II	50.8	102	142	178				
III	203	406	569	711				

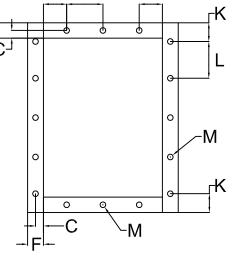
FRAME CONSTRUCTION OPTIONS

Flange (F Dim): Standard- 2"

Optional - 1-1/2" to 4"

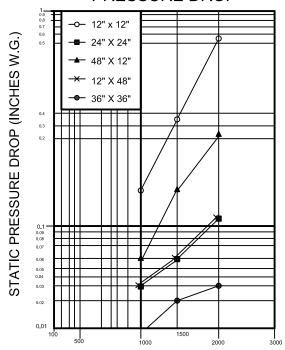
Bolt holes: (Standard construction is **no** bolt holes)

Optional- United Enertech recommended standard pattern.


Dim. "M": 7/16" dia. hole

Web (D Dim): Standard - 8"

Optional - 8" to 12"


Dim. "L": 6" Center to Center

Note: Customer must be within Min. or Max limits on table below. Min or Max **Standard** Description Dim. min. 3/4" First/Last Space in Head/Sill **N1** No. of holes in Head/Sill min. 1.0" First/Last Space in Jamb K min. F/2" **N2** No. of holes in Jamb min. 1.0" C .75*D" to 3/4 F/(2*M)" Centerline of bolt hole from inside edge of frame L Hole Spacing 2" to 12" 6.0" Mounting hole Diameter M 1/4" to 11/16' 7/16"

^{*}Torque applied to hold damper in closed position

PRESSURE DROP

Face Velocity (FT/MIN)

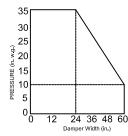
Based on STANDARD AIR- .075 lb. per cubic foot.

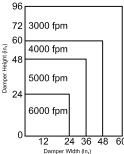
NAH-720-3 sizes: 12x12, 24x24, 48x12, 12x48, 36x36 (305x305, 610x610, 1219x305, 305x1219,914x914)

NAH-720-3

PRESSURE LIMITATIONS

The chart at the right shows conservative pressure limitations based on a maximum blade deflection of w/360.


TEMPERATURE LIMITATIONS


Blade Seals: EPDM -40° to +250°F Silicone Rubber -40° to +450°F Jamb Seals: Flexible stainless steel -40° to +400°F

VELOCITY LIMITATIONS

From Supply

The chart at the right shows conservative velocity limitations based on damper size.

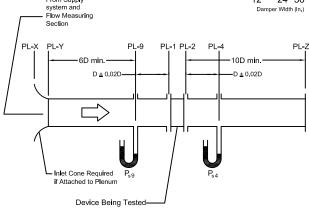


Figure 5.3- Test Device Setup with Inlet and Outlet Ducts

AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

This pressure drop data was conducted in accordance with AMCA Standard 500 using Test Figure 5.3. All data has been corrected to represent standard air at a density of .075 lb/cu.ft.

Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.

12 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.15 (38)
1500 (7.62)	0.33 (83)
2000 (10.16)	0.55 (139)

24 x 24

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15)
2000 (10.16)	0.11 (27)

48 x 12

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.06 (15)
1500 (7.62)	0.15 (38)
2000 (10.16)	0.23 (58)

12 x 48

12 \ 40	
Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.03 (7)
1500 (7.62)	0.06 (15
2000 (10.16)	0.11 (27)

36 x 36

Face Velocity ft/min (m/s)	Pressure Drop in. w.g. (Pa)
1000 (5.08)	0.009 (2)
1500 (7.62)	0.02 (5)
2000 (10.16)	0.03 (7)

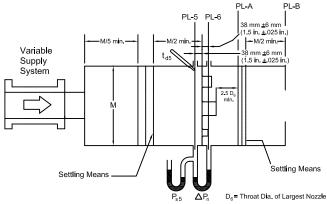


Figure 6.5- Airflow Rate Measurement Setup- Multiple Nozzle Chamber on Fan Outlet